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Photonic Lattices

 Solid state physics uses atom lattice as main framework to explore electronic properties [1] but 

the experimental study of those systems is indirect.

 Photonic lattices allows to study those systems with relatively simple experimental techniques 

because of the analogy between Schrödinger’s equation and the paraxial wave equation [2].

 Also, there are potential applications in security devices [3], quantum computing [4] and 

quantum metrology [5].

[3] Vicencio, R. A. et al. (2015). 



Nonlinear graphene ribbon

 We consider a quasi-1D graphene ribbon with Kerr-type nonlinearity

 The amplitude of the field in each waveguide can be described by a discrete nonlinear 

Schrödinger equation:



Linear Spectrum

 When choosing stationary solutions of the form

 we find the dispersion relation consisting in two flat bands and two   dispersive bands.



Nonlinear localized modes

 We study the focusing case (γ>0), and without loss of generality we set V = γ = 1.

 The two flat band solutions continues existing as exact solutions with no power threshold.

 We look for other localized families of solutions using a multidimensional Newton Raphson 

method, starting from the anticontinuum limit (β>>1 or P>>1), and then approaching to the 

linear bands

A DA AD



Nonlinear 

localized modes

 We characterize these 

families by their Frequency 

(β), Power (P), 

Hamiltonian (H), 

Participation Number (R) 

and Stability Index (G)



Mobility

 Numerical simulations of DA solutions at different powers perturbated by a 

phase kick.

 We found several regions of parameters with good transverse mobility of 

energy.



Mobility

 Even at high kicks we have low radiation, this allows to control the output 

location of the solution without modification of the sample.
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G:

We linearly perturb the nonlinear solutions and obtain a set of equations for the 

perturbation, which yields to a linear eigenvalue spectrum. We look for the 

largest eigenvalue G, which indicates the most unstable perturbation mode and, 

hence, the degree of linear instability of a given solution (perturbation modes 

start to grow on a distance z ∼ 1/G).


