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Photonic Lattices

» Solid state physics uses atom lattice as main framework to explore electronic prope
the experimental study of those systems is indirect.

» Photonic lattices allows to study those systems with relatively simple experimental tec
because of the analogy between Schrodinger’s equation and the paraxial wave equation

» Also, there are potential applications in security devices [3], quantum computing [4] and
quantum metrology [5].
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Nonlinear graphene ribbon

» We consider a quasi-1D graphene ribbon with Kerr-type nonlinearity

» The amplitude of the field in each waveguide can be described by a discrete nonlinear
Schrodinger equation:
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Linear Spectrum

» When choosing stationary solutions of the form

{Cln, bn, Cn, dna €n, fn} — {A, B7 O, D, E, F}eZﬁzezkn

we find the dispersion relation consisting in two flat bands and two dispersive bands.

Dispersion Relation

1< =
< >

Amplitude




Nonlinear localized modes

» We study the focusing case (y>0), and without loss of generality we setV =y = 1.

» The two flat band solutions continues existing as exact solutions with no power threshold.
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» We look for other localized families of solutions using a multidimensional Newton Raphson
method, starting from the anticontinuum limit (B>>1 or P>>1), and then approaching to the

linear bands
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Mobility

» Numerical simulations of DA solutions at different powers perturbated by a
phase kick.

» We found several regions of parameters with good transverse mobility of
energy.
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Mobility

» Even at high kicks we have low radiation, this allows to control the output
location of the solution without modification of the sample.
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We linearly perturb the nonlinear solutions and obtain a set of equations for the
perturbation, which yields to a linear eigenvalue spectrum. We look for the
largest eigenvalue G, which indicates the most unstable perturbation mode and,
hence, the degree of linear instability of a given solution (perturbation modes
start to grow on a distance z ~ 1/G).




