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Photonic Lattices

 Solid state physics uses atom lattice as main framework to explore electronic properties [1] but 

the experimental study of those systems is indirect.

 Photonic lattices allows to study those systems with relatively simple experimental techniques 

because of the analogy between Schrödinger’s equation and the paraxial wave equation [2].

 Also, there are potential applications in security devices [3], quantum computing [4] and 

quantum metrology [5].

[3] Vicencio, R. A. et al. (2015). 



Nonlinear graphene ribbon

 We consider a quasi-1D graphene ribbon with Kerr-type nonlinearity

 The amplitude of the field in each waveguide can be described by a discrete nonlinear 

Schrödinger equation:



Linear Spectrum

 When choosing stationary solutions of the form

 we find the dispersion relation consisting in two flat bands and two   dispersive bands.



Nonlinear localized modes

 We study the focusing case (γ>0), and without loss of generality we set V = γ = 1.

 The two flat band solutions continues existing as exact solutions with no power threshold.

 We look for other localized families of solutions using a multidimensional Newton Raphson 

method, starting from the anticontinuum limit (β>>1 or P>>1), and then approaching to the 

linear bands

A DA AD



Nonlinear 

localized modes

 We characterize these 

families by their Frequency 

(β), Power (P), 

Hamiltonian (H), 

Participation Number (R) 

and Stability Index (G)



Mobility

 Numerical simulations of DA solutions at different powers perturbated by a 

phase kick.

 We found several regions of parameters with good transverse mobility of 

energy.



Mobility

 Even at high kicks we have low radiation, this allows to control the output 

location of the solution without modification of the sample.
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G:

We linearly perturb the nonlinear solutions and obtain a set of equations for the 

perturbation, which yields to a linear eigenvalue spectrum. We look for the 

largest eigenvalue G, which indicates the most unstable perturbation mode and, 

hence, the degree of linear instability of a given solution (perturbation modes 

start to grow on a distance z ∼ 1/G).


